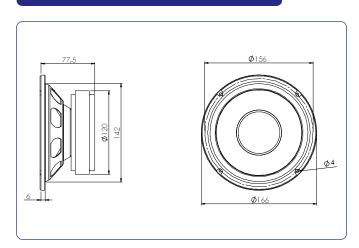


CM-6 MID FREQUENCY TRANSDUCER

KEY FEATURES

- 160W program power.
- 90,7 dB, 2,83V @ 1m sensitivity.
- Foam flat surround.
- Smooth and flat response for accurate mid-frequency reproduction.
- Suited for midrange applications.
- Steel basket.
- Ferrite magnet.


TECHNICAL SPECIFICATIONS

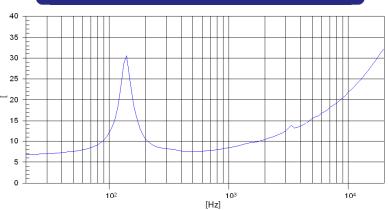
Nominal diameter		165 mi	m 6,5 in
Rated impedance			8 Ω
Minimum impedance			7,5 Ω
Power capacity*			80 W _{RMS}
Program power			160 W
Sensitivity	90,7 dB	2.83v @	1m @ 2π
Frequency range		150 -	6.000 Hz
Recom. enclosure vol.	10 / 4	0 1 0,35	5 / 1,41 ft ³
Voice coil diameter		38,5 mm	1,5 in
Magnetic assembly weight		2 kg	4,40 lb
BL factor			8,1 N/A
Moving mass			0.014 kg
Voice coil length			7,5 mm
Air gap height			6 mm
X _{damage} (peak to peak)			20,7 mm

THIELE-SMALL PARAMETERS**

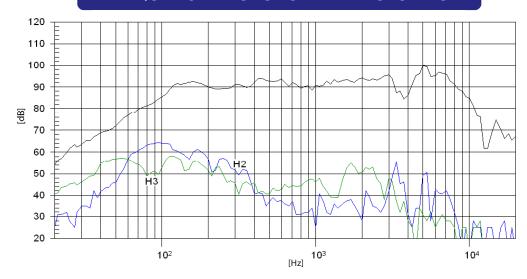
Resonant frequency, f _s	138 Hz
D.C. Voice coil resistance, R _e	6,0 Ω
Mechanical Quality Factor, Q _{ms}	4,74
Electrical Quality Factor, Q _{es}	1,16
Total Quality Factor, Q _{ts}	0,93
Equivalent Air Volume to C _{ms} , V _{as}	2,47 l
Mechanical Compliance, C _{ms}	90,2 μm / N
Mechanical Resistance, R _{ms}	2,69 kg/s
Efficiency, η ₀	0,54 %
Effective Surface Area, S _d	0.014 m ²
Maximum Displacement, X _{max} ***	2,5 mm
Displacement Volume, V _d	14 cm ³
Voice Coil Inductance, Le @ 1 kHz	0,6 mH

DIMENSION DRAWINGS

MOUNTING INFORMATION


Overall diameter Bolt circle diameter	166 mm 156 mm	6,54 in 6,14 in
Baffle cutout diameter:		
- Front mount	142 mm	5,59 in
- Rear mount	152 mm	5,98 in
Depth	77,5 mm	3,05 in
Volume displaced by driver	0,75 I	0,03 ft ³
Net weight	2,16 kg	4,76 lb
Shipping weight	2,36 kg	5,2 lb

Notes:


- * The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.
- ** T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).
- *** The X $_{\rm max}$ is calculated as (L $_{\rm VC}$ H $_{\rm ag}$)/2 + (H $_{\rm ag}$ /3,5), where L $_{\rm VC}$ is the voice coil length and H $_{\rm ag}$ is the air gap height.

FREE AIR IMPEDANCE CURVE

FREQUENCY RESPONSE AND DISTORTION

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

beyma //

Polígono Industrial Moncada II • C/. Pont Sec, 1c • 46113 MONCADA - Valencia (Spain)

• Tel.: (34) 96 130 13 75 • Fax: (34) 96 130 15 07 • http://www.beyma.com • E-mail: beyma@beyma.com •