

15WR400

LOW FREQUENCY TRANSDUCER
Preliminary Data Sheet

KEY FEATURES

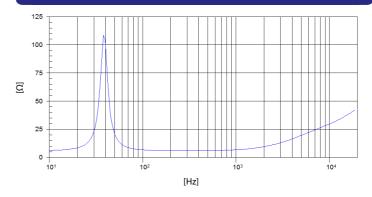
- High power handling: 800 W program power
- 3" copper wire voice coil
- High sensitivity: 99 dB (1W / 1m)
- FEA optimized magnetic circuit
- Designed with MMSS technology for high control, linearity and low harmonic distortion
- Waterproof cone treatment on both sides of the cone
- Extended controlled displacement: X_{max} ± 6,3 mm
- X_{damage} ± 30 mm
- Weight 6,1 kg
- Low harmonic distortion and linear response
- Wide range of applications of low and mid-low frequencies

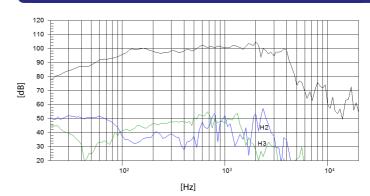
TECHNICAL SPECIFICATIONS

Nominal diameter	380 mm 15 ir
Rated impedance	8 0
Minimum impedance	6,4 Ω
Power capacity*	400 W _{AES}
Program power	800 W
Sensitivity	99 dB @ 1W @ 1m @ Z _N
Frequency range	40 - 4.000 Hz
Voice coil diameter	77 mm 3 ir
BI factor	19,7 N/A
Moving mass	0,091 kg
Voice coil length	16 mm
Air gap height	8 mm
X _{damage} (peak to peak)	30 mm

THIELE-SMALL PARAMETERS**

Resonant frequency, f _s	38 Hz
D.C. Voice coil resistance, R _e	5,7 Ω
Mechanical Quality Factor, Q _{ms}	8
Electrical Quality Factor, Q _{es}	0,32
Total Quality Factor, Q _{ts}	0,30
Equivalent Air Volume to C _{ms} , V _{as}	214
Mechanical Compliance, C _{ms}	195 μm / N
Mechanical Resistance, R _{ms}	2,7 kg/s
Efficiency, η ₀	3,5 %
Effective Surface Area, S _d	0,088 m ²
Maximum Displacement, X _{max} ***	6,3 mm
Displacement Volume, V _d	555 cm ³
Voice Coil Inductance, Le @ 1 kHz	1 mH


Notes


MOUNTING INFORMATION

388 mm	15,28 in
370 mm	14,57 in
349,5 mm	13,76 in
160 mm	6,30 in
6,1 kg	13,4 lb
7,1 kg	15,6 lb
	370 mm 349,5 mm 160 mm 6,1 kg

FREE AIR IMPEDANCE CURVE

FREQUENCY RESPONSE & DISTORTION

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

^{*} The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.

^{**} T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

^{***} The X_{max} is calculated as $(L_{vc} - H_{ag})/2 + (H_{ag}/3.5)$, where L_{vc} is the voice coil length and H_{ag} is the air gap being the state of the state of